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In digital image editing software, layers organize images. However, layers are
often not explicitly represented in the final image, and may never have existed
for a scanned physical painting or a photograph. We propose a technique to
decompose an image into layers. In our decomposition, each layer represents
a single-color coat of paint applied with varying opacity. Our decomposition
is based on the image’s RGB-space geometry. In RGB-space, the linear
nature of the standard Porter-Duff [1984] “over” pixel compositing operation
implies a geometric structure. The vertices of the convex hull of image
pixels in RGB-space correspond to a palette of paint colors. These colors
may be “hidden” and inaccessible to algorithms based on clustering visible
colors. For our layer decomposition, users choose the palette size (degree of
simplification to perform on the convex hull), as well as a layer order for the
paint colors (vertices). We then solve a constrained optimization problem
to find translucent, spatially coherent opacity for each layer, such that the
composition of the layers reproduces the original image. We demonstrate
the utility of the resulting decompositions for recoloring (global and local)
and object insertion. Our layers can be interpreted as generalized barycentric
coordinates; we compare to these and other recoloring approaches.
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1. INTRODUCTION
Digital painting software simulates the act of painting in the real
world. Artists choose paint colors and apply them with a mouse
or drawing tablet by painting with a virtual brush. These virtual
brushes have varying opacity profiles, which control how the paint
color blends with the background. Digital painting software typically
provides the ability to create layers, which are composited to form
the final image yet can be edited separately. Layers organize images.
However, layers are often not explicitly represented in a final digital
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image. Moreover, scanned physical paintings and photographs do
not have such layers. Without layers, simple edits become extremely
challenging, such as altering the color of a coat without inadvertently
affecting a scarf placed overtop.

We propose a technique to decompose any image into layers
(Figure 1). In our decomposition, each layer represents a coat of
paint of a single color applied with varying opacity throughout
the image. We use the standard Porter-Duff [1984] “A over B”
compositing operation:

(A over B)RGB =
A↵ARGB + (1�A↵)B↵BRGB

(A over B)↵
(1)

(A over B)↵ = A↵ + (1�A↵)B↵ (2)

where pixel A with color ARGB and translucency A↵ is placed over
pixel B with color BRGB and translucency B↵. Users choose the size
of the desired palette, and our technique automatically extracts paint
colors. Given a user-provided order for the colors, our technique
computes per-pixel opacity for each layer.1 The result is a sequence
of layers that reproduce the original painting when composited.

In digital painting programs, the aforementioned “over” com-
positing operation is the standard way to apply virtual paint. In
RGB-space, the pixels of such a painting reveal a hidden geometric
structure (Figure 2). This structure results from the linearity of the
“over” compositing operation. The paint color acts as a linear attrac-
tor in RGB-space. Affected pixels move towards the paint color via
linear interpolation; the paint’s transparency determines the strength
of attraction, or interpolation parameter. All possible image colors
are convex combinations of the paint colors. In RGB-space, all
possible image colors lie within the convex hull of the paint colors
(Figures 2 and 4). Our approach for decomposing any image into
layers is based on this observation. Our algorithm is agnostic as to
how a pixel achieved its color and does not require or assume that
pixels were created via “over” compositing. For example, physical
paint compositing can be approximated by the Kubelka-Munk layer-
ing and mixing models [Kubelka and Munk 1931; Kubelka 1948].
However, no simple model can describe images in general. Our goal
is to decompose an image into useful layers. We choose Porter-Duff
“over” compositing for our output representation because it is the
de-facto standard for image editing. For images created with “over”
compositing, the recovered layers may be similar to ground truth
(Figure 4), though we do not expect this in general. For images
best described by another model, the recovered layers will not be as
sparse or clean as they could be with a technique that operated in
the parameters of the unknown model.

Overview The first stage in our pipeline identifies a small color

palette capable of generating all colors in an image (Section 3). We
compute the exact convex hull of the image colors in RGB-space. Its
vertices are capable of reproducing any color in the image. However,
this exact convex hull is a tight wrapping of the image colors and
typically has too many vertices. (As these vertices are the color

1The ordering is necessary, because the “over” compositing operation is not
commutative.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month 2016.



2 • J. Tan et al.

original RGB space

1 2 3

4 5 composite

RGB spacerecolored

Fig. 1. Given a digital painting, we analyze the geometry of its pixels in RGB-space, resulting in a translucent layer decomposition, which makes difficult edits
simple to perform. Original artwork c� Adelle Chudleigh.

palette, having too many vertices produces an unmanageable number
of layers for the user.) Therefore, we simplify the convex hull to a
user-specified palette size (vertex count) that still encloses the image
colors. This often reveals “hidden” colors inaccessible to algorithms
based on clustering. Our simplification is based on the progressive
hull algorithm [Sander et al. 2000]. Naively, a simplified convex
hull may have vertices outside the cube of valid RGB colors. We
adjust the simplified vertices to find real (as opposed to imaginary)
colors.

In the second stage of our pipeline, we compute per-pixel layer

opacities, given a user-specified layer ordering of the paint colors
(Section 4). This results in RGBA layers that, when composited,
reproduce the input image. Each layer models a coat of paint. Our
computation solves an under-constrained polynomial system of
equations. The polynomial equations express the constraint that
the “over” composition of all layers reproduces the input image.
The system is under-constrained, because, in general, there are
multiple ways to paint a pixel to arrive at a given color (Figure 6).
The system is only well-defined when there are exactly four paint
colors (a tetrahedron) and the desired color is in the interior. This
is related to barycentric coordinates only being unique for a point
inside a simplex—tetrahedron in 3D.2 To solve this underconstrained
problem, we perform energy minimization with terms to maximize
translucency—absent additional information, fewer rather than more
layers should contribute to a pixel—and spatial coherence.

Constraints For perfect reproduction, the color palette’s con-
vex hull must enclose all image colors. This may not be possible for
too-small color palettes, given that the hull vertices must be valid

colors that lie within the unit RGB cube. It is possible to use fewer
vertices if they can be “imaginary” colors outside the RGB cube.
Furthermore, we require valid opacity values that lie between 0 and
1. If we allow opacity values beyond 0 and 1, we could reproduce
colors outside the convex hull of the color palette, but that is not a
standard layer format. Finally, we assume single-color layers. Each
layer models a coat of paint of a single color applied with varying
opacity.

Our contributions are:

2A point inside a polyhedron with more than four vertices lies in more than
one tetrahedron (whose vertices are a subset of the polyhedron’s). To see this,
consider that we can always tetrahedralize the polyhedron’s interior (e.g. via
a Delauney tetrahedralization) to obtain one set of barycentric coordinates
for any point; we can also perform a tetrahedra analogue of the two-triangle
edge flip operation on any tetrahedron containing a point and one of its
neighbors to obtain a different tetrahedralization of their space and therefore
different barycentric coordinates for the point.

image color space
r

g

convex hull simplified 
convex hull

clusters

Fig. 2. In RGB-space, the pixels of a digital image (left) lie in the convex
hull of the original paint colors (right). This is due to the linearity of the
standard “over” blending operation [Porter and Duff 1984]. Our approach
computes a simplified convex hull to find a small set of generating colors for
decomposing the image into layers. This simplified convex hull often reveals
“hidden” colors inaccessible to algorithms based on clustering.

—The geometric analysis of an image in RGB-space to determine a
small color palette capable of reproducing the image (Section 3).
Our algorithm is based on its simplified RGB-space convex hull.

—An optimization-based approach to compute per-layer, per-pixel
opacity values (Section 4) given a user-provided ordering of the
colors. The layers, when composited, reproduce the input image
with minimal error. Our approach regularizes an underconstrained
problem with terms that balance translucency and spatial coher-
ence.

The result of these contributions is a technique that decomposes a
single image into translucent layers. Our approach can be applied to
any image, such as photographs and physical paintings, to extract a
small palette of generating colors. Our decomposition enables the
structured re-editing and recoloring of digital paintings and other
images. Furthermore, our layers can be interpreted as a generalized
barycentric coordinate representation of the image (Section 4.2). We
compare our results to recoloring and generalized barycentric coor-
dinate approaches (Section 5). We also consider various relaxations
of our problem statement, such as imaginary colors, multiple colors
per layer, and opacity values outside [0, 1].

2. RELATED WORK

Single-Image Decomposition Richardt et al. [2014] investi-
gated a similar problem with the goal of producing editable vector
graphics. Our goal is to produce editable layered bitmaps. They
proposed an approach in which the user selects an image region,
and the region is then decomposed into a linear or radial gradient
and the residual, background pixels. Our approach outputs bitmap
image layers, which are a less constrained domain. Our approach
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also requires much less user input. For comparison, we decompose
several images from their paper (Figure 12).

Xu et al. [2006] presented an algorithm for decomposing a sin-
gle image of a Chinese painting into a collection of layered brush
strokes. Their approach is tailored to a particular style of artwork.
They recover painted colors by segmenting and fitting curves to
brush strokes. They also consider the problem of recovering per-
pixel opacity as we do. In their setting, however, they assume at
most two overlapping strokes and minimally varying transparency.
We consider a more general problem in which strokes have no
known shape and more than two strokes may overlap at once. Fu et
al. [2011] introduced a technique to determine a plausible animated
stroke order from a monochrome line drawing. Their approach is
based on cognitive principles, and operates on vector graphics. We
do not determine a stroke order; rather, we extract paint colors and
per-pixel opacity and operate on raster digital paintings.

McCann and Pollard [2009; 2012] introduced two generalizations
to layering, allowing (a) pixels to have independent layer orders and
(b) layers to partially overlap each other. We solve for layer opacity
coefficients in the traditional, globally and discretely ordered model
of layers.

Scale-space filtering [Witkin 1983] and related techniques [Subr
et al. 2009; Aujol and Kang 2006; Farbman et al. 2008] decompose
a single image into levels of varying smoothness. These decomposi-
tions separate the image according to levels of detail, such as high
frequency texture and underlying low-frequency base colors. These
techniques are orthogonal to ours, as they are concerned with spatial
frequency and we are concerned with color composition.

Intrinsic image decomposition [Grosse et al. 2009; Shen et al.
2008; Bousseau et al. 2009] attempts to separate a photographed
object’s illumination (shading) and reflectance (albedo). Lawrence
et al. [2006] tackled the related physical problem of decomposing a
Spatially-Varying Bidirectional Reflectance Distribution Function
into a shade tree. These decompositions are suitable for photographs
of illuminated objects, but not e.g. digital paintings.

The recoloring approach of Chang et al. [2015] extracts a color
palette from a photograph by clustering. Gerstner et al. [2013] ex-
tracted sparse palettes from arbitrary images for the purpose of
creating pixel art. Unlike approaches based on clustering the ob-
served colors, our approach has the potential to find simpler and
even “hidden” colors. Consider an image created from a blend of
two colors with varying translucency, never opaque. In the final
image, the original colors will never be present, though an entire
spectrum of other colors will be (Figure 2).

Editing History Tan et al. [2015] and Amati and Brostow [2010]
described approaches for decomposing time-lapse videos of physi-
cal (and digital, for Tan et al. [2015]) paintings into layers. In our
scenario, we have only the final painting, though we make the sim-
plifying assumption that only Porter-Duff [1984] “over” blending
operations were performed.

Hu et al. [2013] studied the problem of reverse-engineering the
image editing operation that occurred between a pair of images. We
are similarly motivated by “inverse image editing”, though we solve
an orthogonal problem in which only a single image is provided and
the only allowable operation is painting.

A variety of approaches have been proposed to make use of
image editing history (see Nancel and Cockburn [2014] for a recent
survey). While we do not claim that our decomposition matches the
true image editing history, our approach could be used to provide
a plausible editing history. In particular, Wetpaint [Bonanni et al.
2009] proposed a tangible “scraping” interaction for visualizing the
layers of a painting.

Matting and Reflections Smith and Blinn [1996] studied the
problem of separating a potentially translucent foreground object
from known backgrounds in a photo or video (“blue screen matting”).
Zongker et al. [1999] solved a general version of this problem
which allows for reflections and refractions. Levin et al. [Levin et al.
2008a; Levin et al. 2008b] presented solutions to the natural image
matting problem, which decomposes a photograph with a natural
background into layers; Levin et al.’s solutions assume at most three
layers per small image patch and find as-binary-as-possible opacity
values. We compare our output to Levin et al. [Levin et al. 2008b]
in Section 5. Layer extraction has been studied in the context of
photographs of reflecting objects, such as windows [Szeliski et al.
2000; Farid and Adelson 1999; Levin et al. 2004; Sarel and Irani
2004]. These approaches make physical assumptions about the scene
in the photograph, they require a pair of photographs as input ([Farid
and Adelson 1999]). We consider digital images in general, in which
physical assumptions are not valid and there are typically more than
two layers.

3. IDENTIFYING PAINT COLORS
The first step in our pipeline identifies the colors used to paint the
image. In a digital painting, many pixels will have been painted
over multiple times with different paint colors. Because the paint
compositing operation is a linear blend between two paint colors
(Equation 1), all pixels in the painting lie in the RGB-space convex
hull formed by the original paint colors. Equivalently, any pixel
color p can be expressed as the convex combination of the original
paint colors ci:

p =
X

wici (3)

for some weights wi 2 [0, 1] with
P

wi = 1. This convex combi-
nation property is true for Porter-Duff “over” compositing, but not
true for nonlinear compositing such as the Kubelka-Munk model of
pigment mixing or layering [Budsberg 2007]. Figures 1, 4, 17, 19,
21, and 12 display pairs of images and their pixels in RGB-space.
Note that the wi in Equation 3 are not opacity values. Rather, they
are generalized barycentric coordinates and do not depend on the
layer order. The relationship between layer opacity and generalized
barycentric coordinates will be discussed in Section 4.

To identify the colors used to paint the digital image (or a set
of generating colors for any image), we first compute the RGB-
space convex hull of all observed pixel colors. The convex hull is a
tight wrapping of the colors. In practice, it will be overly complex
(too many vertices). Too many vertices would result in an unwieldy
number layers; we wish to have a manageable (user-determined)
number of layers with clearly differentiated colors (Figure 3). The
large number of vertices may be due to quantization artifacts or
to the generating colors being applied semi-transparently. Semi-
transparent paint does not produce any pixels with the paint color
itself. This manifests as “cut corners” or extra faces in the convex
hull (Figure 2).

3.1 Simplifying the convex hull
The next stage in our pipeline simplifies the convex hull to a desired,
user-provided palette size. We considered a variety of simplification
approaches. There is a well-known convex polytope approximation
due to Dudley [Dudley 1974; Har-Peled 1999]. This approxima-
tion strictly adds volume, so all colors will still be contained in
the approximate shape. The approximation takes the form of a con-
structive proof to find a simpler polytope with O( 1

µ ) vertices that
adds less than a factor of µ volume. The constructive proof is, for
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Fig. 3. Various simplification levels for the RGB-space convex hull of an image. Artwork c� Dani Jones.

our purposes, under-determined. Vertices are selected based on any
regular sampling of the shape’s bounding sphere. This approach is
not rotation invariant and ends up selecting a subset of the original
polytope’s faces. The selected faces are treated as half-planes which
define a new polytope. Instead, we use a tighter, well-determined
approximation.

The progressive hull is a mesh simplification technique introduced
by Sander et al. [Sander et al. 2000]. The approach is based on a
sequence of edge contractions, in which an edge is contracted to a
vertex. The vertex is placed according to a constrained optimization
problem. The constraints are that the vertex must be placed outside
(the plane of) every face incident to the edge. Equivalently, every
tetrahedron formed by connecting the new vertex to a face incident
to the edge must add volume to the shape. The progressive hull
objective function minimizes the total added volume. The next edge
to contract is the one whose contraction adds the least volume.
(Edges with no solution satisfying the constraints are skipped.) This
approximation strictly adds volume, so all colors are guaranteed to
be contained in every step of the progressive hull. Moreover, the
constraints and objective function are linear, since the (oriented)
volume of a tetrahedron with three fixed vertices is linear:

A

3
n · (v � v0) (4)

where v is the free vertex, v0 is any one of the fixed vertices, and n

and A are the outward unit normal and area of the triangle formed
by the three fixed vertices. As a result, the constrained optimization
for each edge contraction is a linear programming problem, which
can be solved efficiently.

There are infinitely many solutions when all faces incident to
an edge are exactly coplanar. If all faces are nearly coplanar, the
solution becomes unstable. We considered alternative objective func-
tions (subject to the progressive hull constraints): the distance to
each face’s plane (the objective function used in the classic mesh
simplification approach of Garland and Heckbert [1997] and equiv-
alent to not multiplying by A

3 in Equation 4); the distance to the
edge undergoing contraction (a quadratic programming problem).

A simple digital 
painting

RGB-space 
convex hull

Our simplified 
hull

Ground truth

Fig. 4. (a) A simple digital painting’s (b) convex hull in RGB-space is
complex due to rounding. (c) The result of our simplification algorithm (d)
matches ground truth, its original paint colors as an RGB-space polyhedron.

We experimented with these alternative objective functions both
for determining the contracting edge’s vertex placement and as the
metric for determining the next edge to contract. All combinations
usually produced similar results. Our results were computed using
added volume to determine the next edge to contract and the total
distance to incident face’s planes in the constrained optimization,
as this combination produced stabler results than the total added
volume constrained optimization with the same running time.

We also experimented with a RANSAC plane-fitting approach,
in which we greedily fit planes to the convex hull. The simplified
polyhedron is then taken as the intersection of the half-spaces de-
fined by each plane. However, this approach is difficult to control.
The degree of simplification is limited as the planes cannot deviate
from the convex hull, and the planes’ intersections produce multiple
nearby vertices. As a result, the user cannot directly specify a de-
sired number of vertices. Moreover, there are additional parameters
to tune, such as the RANSAC inlier distance and the threshold for
collapsing nearby vertices in the planes’ intersections.

3.2 Imaginary colors
While the vertices of the convex hull are always located within the
RGB cube, the vertices of a simplified hull may not be. Vertices
outside the RGB cube are “imaginary” colors, and cannot be used
as layer colors. They can, however, still be used for recoloring based
on generalized barycentric coordinates (Section 4.2).

For our layer decomposition, we require valid colors. Constrain-
ing the linear programming optimization to only consider vertices
within the RGB cube frequently over-constrains the problem, re-
sulting in no solution. Intersecting the simplified hull with the cube
(as solid shapes) increases the number of vertices, sometimes in a
manner that is difficult to control, such as when a vertex protrudes
only a small amount.

There is a tension between a small number of vertices and a
simplified hull that still encloses all image colors. Our solution is
to allow reconstruction error in order to achieve a user’s desired
color palette size. We experimented with optimization to adjust
vertex positions—minimizing the average distance of all pixels to
the hull and the distance hull vertices move—but found the added
complexity and running time to have little overall impact on the
reconstruction error (Figure 5). We also experimented with optimiz-
ing vertex placement during our subsequent opacity computation
(Section 4), but found it difficult to control. Ultimately, some amount
of error is unavoidable due to the small number of hull vertices con-
strained to lie within the RGB cube. Simply projecting simplified
vertices that lie outside the RGB cube to the closest point on the
cube resulted in a simple, predictable algorithm and reconstructions
with low error (Table I). After projecting hull vertices, some image
colors no longer lie within the hull. We project such outside image
colors to the closest point on the hull’s surface. This is a source of

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month 2016.



Decomposing Images into Layers via RGB-space Geometry • 5
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Fig. 5. One of the only images in our dataset in which vertex position
optimization led to an improvement in vertex positions. The impact was
negligible on reconstruction error. Artwork c� Karl Northfell.
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Fig. 6. A pixel can be represented as a path from the background color c0
towards each of the other colors c1, c2, c3, . . . in turn. The opacity values
↵i determine the length of each arrow as a fraction of the entire line segment
to ci. When there are no more than four colors (left), there is only one
possible path. With more than four colors (right), there are many possible
paths.

reconstruction error. In Figure 15, we show an interface in which
the imaginary colors can directly be used for image recoloring.

The next stage of our algorithm determines the per-pixel opacity
of each layer.

4. DETERMINING LAYER OPACITY
The final stage of our algorithm computes per-pixel opacity values
for each layer. This stage takes as input ordered RGB layer colors
{ci} resulting from Section 3. Then, at each pixel, the observed
color p can be expressed as the recursive application of “over”
compositing (Equation 1), factored into the following convenient
expression:

p = cn +
nX

i=1

"
(ci�1 � ci)

nY

j=i

(1� ↵j)

#
(5)

where ↵i is the opacity of ci, and the background color c0 is opaque.
Since colors p and ci are three dimensional (RGB), this is a system
of three polynomial equations with number of layers unknowns. For
RGBA input images or images with an unknown background color,
premultiplied RGBA colors should be used. Equation 5 becomes
a system of 4 polynomial equations. The background layer c0 be-
comes transparent—the zero vector—while the remaining global
layers colors ci are opaque.

There will always be at least one solution to Equation 5, because
p lies within the RGB-space convex hull of the ci. When the number
of layers is less than or equal to four (not counting the translucent
background in case of RGBA), there is, in general, a unique solution.
It can be obtained geometrically in RGB-space by projecting p
along the line from the top-most layer color cn onto the simplex
formed by c0 . . . cn�1, and so on recursively (Figure 6). However,
if p is identical to one of the ci (other than the bottom layer), or
the number of layers is greater than four, there are infinitely many
solutions (Figure 6). For numerical reasons, it is problematic when
p is nearly identical to a layer color—a situation which arises often.

4.1 Layer Order
“Over” color compositing, while linear, is not commutative. For n
layers, there are n! orderings. Because of the large possibility space,
and the unknown semantics of the colors, we do not automate the
determination of the layer order. In our experiments, we computed
opacity values for all n! layer orders with the algorithm described
in this section and attempted to find automatic sorting criteria. We
experimented with the total opacity, gradient of opacity, and Lapla-
cian of opacity, but none matched human preference. As a result, we
require the user to choose the layer order for the extracted colors.
An alternative layer order for the example in Figure 1 is shown in
Figure 7.

4.2 Generalized Barycentric Coordinates
Generalized Barycentric Coordinates express any point p inside a
polyhedron as a weighted average of the polyhedron’s vertices ci
(Equation 3). For simple recoloring applications, the RGB-space
vertices can be modified and the pixel colors then recomputed. The
sparsest possible weights have at most four non-zero wi. In other
words, a pixel can always be expressed as the weighted average of
four colors. This corresponds to the well-defined, non-generalized
barycentric coordinates of any tetrahedron enclosing p whose ver-
tices are a subset of the ci. These as-sparse-as-possible (ASAP)
weights can be made continuous as a function of p by using a
conforming (non-overlapping) tetrahedralization of the polyhedron.
Since the tetrahedra must be composed of vertices of the simplified
convex hull, this corresponds to choosing one color and connecting
it to every face. If the user has identified an opaque background
color as the bottom-most layer, then a natural choice is to choose
it; the ASAP weights therefore define all pixels as the mixture of at
most three non-background colors.

Generalized barycentric coordinates wi for a pixel can be con-
verted into layer opacities ↵i as follows:

↵i =

8
<

:
1�

Pi�1
j=0 wj

Pi
j=0 wj

if
Pi

j=0 wj 6= 0

0 otherwise
(6)

Due to the division by zero in the general case, the conversion from
generalized barycentric coordinates to opacity values is ambiguous
and relies on an arbitrary and potentially non-smooth choice. This
corresponds to the ambiguity that arises when an opaque layer
occludes everything underneath. Due to this ambiguity, we propose
a sparse and smooth optimization-based approach to computing
layer opacities.

Note that layer opacity values can be converted to generalized
barycentric coordinates in a well-defined manner:

wi =

8
><

>:

Qn
j=i+1(1� ↵j) if i = 0�Qn
j=i+1(1� ↵j)

�
�

�Qn
j=i(1� ↵j)

�
if 0 < i < n

1�
Qn

j=i(1� ↵j) = ↵i if i = n

(7)

We compare our optimization solutions to ASAP weights and two
other well-known generalized barycentric coordinates, Mean-Value
Coordinates [Floater et al. 2005; Ju et al. 2005] and Local Barycen-
tric Coordinates [Zhang et al. 2014], in Section 5.

4.3 Optimization
To choose among the infinitely many solutions to Equation 5, we in-
troduce two regularization terms and solve an optimization problem.
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Fig. 7. Different layer orders result in different decompositions. Artwork c� Adelle Chudleigh.

Our first regularization term penalizes opacity; absent additional
information, a completely occluded layer should be transparent.

E
opaque

=
1

n

nX

i=1

�(1� ↵i)
2 (8)

Minimizing �(1 � ↵i)2 rather than the more typical ↵2
i results

in a far sparser solution. Intuitively, naively squaring ↵i produces
an objective function that would “prefer” to decrease ↵i from 1
and increase some other ↵j away from 0. Our E

opaque

prefers the
opposite, resulting in a sparse solution. This unusual formulation is
possible because the ↵i are bounded in the interval [0, 1].

Our second regularization term penalizes solutions which are not
spatially smooth. We use the Dirichlet energy, which penalizes the
difference in ↵i between each pixel and its spatial neighbors:

E
spatial

=
1

n

nX

i=1

(r↵i)
2 (9)

where r↵i is the spatial gradient of opacity in layer i.
We minimize these two terms subject to the polynomial con-

straints (Equation 5) and ↵i 2 [0, 1]. We implement the polynomial
constraints as a least-squares penalty term per-pixel E

polynomial

:

E
polynomial

=
1

K

�����cn � p+
nX

i=1

"
(ci�1 � ci)

nY

j=i

(1� ↵j)

#�����

2

(10)

where K = 3 or 4 depending on the number of channels (RGB or
RGBA). The combined energy expression that we minimize is:

w
polynomial

E
polynomial

+ w
opaque

E
opaque

+ w
spatial

E
spatial

We used w
polynomial

= 375, w
opaque

= 1, w
spatial

= 100 for all of
our examples. Figure 8 shows an evaluation of the effect of changing
weights for our one example in which the defaults do not produce
the best output.

5. RESULTS

Implementation We use QHull [Barber et al. 1996] for convex
hull computation, GLPK [GLP 2015] for solving the progressive
hull linear programs, and L-BFGS-B [Zhu et al. 1997] for opacity
optimization. Our algorithms were written in Python and vectorized
using NumPy/SciPy. Our implementation is not multi-threaded.

To improve the convergence speed of the numerical optimization,
we minimize our energy on recursively downsampled images and

adjusting 

adjusting 

Fig. 8. The effect of changing the opacity optimization weights. For this
example, w

opaque

= .1, w
spatial

= 100 produces a better result than the
values used for all other examples (w

opaque

= 1, w
spatial

= 100).

use the upsampled solution as the initial guess for the larger images
(and, eventually, the original image). We down/upsampled by factors
of two. We used ↵i = 0.5 as the initial guess for the smallest
image. We experimented with using As-Sparse-As-Possible (ASAP)
weights as the initial guess, without downsampling. (Downsampling
is incompatible with a detailed guess.) With the ASAP initial guess,
optimization took longer on average while producing similar or
worse (less smooth) results.

Performance All experiments were performed on a single core
of a 2.9 GHz Intel Core i5-5257U processor. Paint color identifi-
cation (Section 3) takes a few seconds to compute the simplified
convex hull; the bottleneck is the user choosing the desired amount
of simplification. Computing layer opacity (Section 4) entails solv-
ing a nonlinear optimization procedure. As we implemented our
optimization in a multi-resolution manner, the user is able to quickly
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Table I. Performance
opacity optimization

image width ⨉ 
height

runtime 
(seconds)

RMSE median 
error

max error

apple 500 × 453 330.3 1.8 0.0 32.3
bird 640 × 360 500.4 3.7 2.2 60.1
rowboat 589 × 393 981.4 3.3 2.4 19.2
buildings 589 × 393 317.9 2.3 1.4 32.2
cup 400 × 400 40.9 3.0 0.0 34.3
fruit 650 × 414 212.1 1.9 0.0 22.6
girls 589 × 393 152.7 2.4 1.4 29.1
hoover 500 × 500 47.1 3.9 1.0 39.2
light 504 × 538 101.6 2.4 1.0 25.5
robot 450 × 600 519.8 3.5 2.8 14.5
scrooge 410 × 542 97.6 2.6 1.4 15.7
Figure 4 500 × 500 434.3 0.7 0.0 3.3
trees 606 × 404 80.2 5.9 4.2 35.0
turtle 525 × 250 19.5 2.8 1.0 45.4
boat 480 × 600 520.0 4.2 2.2 40.2
castle 747 × 344 280.0 3.7 2.2 45.6
turquoise 480 × 585 498.7 2.0 1.4 17.8
moth 650 × 390 675.1 3.1 1.7 25.7

Running time and reconstruction error. Difference images appear al-
most universally black and can be found in the supplemental materials.

see a preview of the result (seconds for a 100-pixel-wide image).
This is important for experimenting with different layer orders and
energy weights. Larger images are computed progressively as the
multi-resolution optimization converges on smaller images; the final
optimization can take anywhere from one minute to 15 minutes to
converge (Table I). Once decomposed, applications such as recol-
oring and object insertion are computed extremely efficiently as
compositing operations.

Layer Decompositions Figures 1, 7, 12, 17, 19, and 21 show
the decomposition of a variety of digital paintings. The decomposed
layers reproduce the input image without visually perceptible dif-
ferences and with low root-mean squared error (Table I). Absolute
difference images, virtually all of which appear uniformly black,
can be found in the supplemental materials. This is because the
approximate convex hulls cover almost every pixel in RGB-space
(Section 3), and the polynomial constraints in the energy minimiza-
tion ensure that satisfying opacity values are chosen (Section 4).
The decomposed layer representations facilitate edits like spatially
isolated recoloring (Figure 9) and inserting objects between layers
(Figure 10), in addition to global recoloring by changing palette
colors (Figures 13, 18, 20, and 22).

Comparisons We have compared the output of our results to
several alternative layer decomposition and recoloring approaches.
Figure 11 compares global recolorings using our layer decomposi-
tion and the approach of Chang et al. [2015]. Our results contain
fewer unrelated changes or artifacts. Note that the approaches find
different palettes. These recolorings were created by modifying each
approach’s palette to achieve a similar recoloring result. Only our ap-
proach detects e.g. the blue and green colors in the apple or the blue
color in scrooge. (Figure 18 shows our scrooge palette, while Chang
et al. [2015]’s palette is .) As Chang et al. [2015]

top layer (over black)

middle layer

second-from-top layer

top layer

top layer

bottom layers

Fig. 9. Our layer decomposition enables local image recoloring. The input
images’ layer decompositions can be seen in Figures 17, 19, and 21. Original
artworks c� Michelle Lee; [Bychkovsky et al. 2011]; Michelle Lee; Adam
Saltsman; Dani Jones.

above between

above between

Fig. 10. Inserting graphics as new layers between our decomposed layers
(Figures 17, 19, and 8) produces a more natural result than pasting graphics
above. Original artworks c� Karl Northfell, Michelle Lee.

is based on clustering image colors, their
palette colors all lie within the interior of
the pixel colors in RGB-space. Because
these important colors are infrequent, they
are missed by clustering-based methods.
See inset right for bird colors detected by
Chang et al. [2015] in RGB-space. Fig-
ures 21 shows the results of our layer de-
composition algorithm on examples from
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Table II. Generalized Barycentric Coordinate weight sparsity

image MVC LBC
Our 

optimization ASAP
apple 0.54 0.59 0.62 0.66
rowboat 0.11 0.34 0.44 0.57
girls 0.10 0.22 0.36 0.40
robot 0.01 0.14 0.47 0.50
scrooge 0.30 0.38 0.51 0.53
Figure 4 0.33 0.38 0.41 0.47
boat 0.08 0.24 0.49 0.60
apple 0.10 0.27 0.41 0.46
rowboat 0.03 0.20 0.41 0.52
girls 0.00 0.14 0.34 0.37
robot 0.00 0.18 0.39 0.47
scrooge 0.10 0.18 0.29 0.31
Figure 4 0.01 0.16 0.18 0.26
boat 0.01 0.23 0.45 0.54

va
lid

 c
ol

or
s

in
va

lid
 c

ol
or

s

Our weights are sparser than Mean-Value Coordinates [Floater et al. 2005; Ju et al.
2005] and Local Barycentric Coordinates [Zhang et al. 2014], and almost as sparse
as the optimal As-Sparse-As-Possible weights. Sparsity is computed as the fraction of
near-zero values (✏ = 1/512

#vertices ). The lower half of the table (shaded yellow) shows
sparsity when imaginary colors are used, which may be further from the pixel colors.

Chang et al. [2015] and Figure 22 shows additional recoloring re-
sults. The computational complexity of our recolorings is extremely
low; the recolored image is a per-pixel weighted average of the color
palette. See the supplemental materials for an interactive recoloring
GUI.

Figure 12 shows the results of our layer based decomposition
on examples from the vector graphics decomposition algorithm of
Richardt et al. [2014]. Our algorithms produce substantially dif-
ferent output. In Richardt et al. [2014], users manually segment
portions of each image to be decomposed into a gradient layer. Re-
coloring results for these examples are shown in Figure 13. The
RGB-space geometric structure of the circular light’s pixels show-
cases the strength of our algorithm, which achieves virtually the
same colors as ground truth.

Figure 14 shows the results of the soft matting algorithm of
Levin et al. [2008b] on one of our examples. This spectral matting
approach makes natural image assumptions and is not well suited
for digital paintings.

Generalized Barycentric Coordinates Via Equation 7, we
are able to compare our results to generalized barycentric coordi-
nates and edit images even with imaginary colors. We compared to
Mean-Value Coordinates (MVC) [Floater et al. 2005; Ju et al. 2005],
which are fast and closed form, and Local Barycentric Coordinates
(LBC) [Zhang et al. 2014], which require solving an optimization
and aim to find sparse weights. We also compare to our As-Sparse-
As-Possible (ASAP) weights, which are not smooth spatially in
image-space and only C0 smooth in RGB-space. Notably, our opac-
ity optimization produces sparser weights than either Mean-Value
Coordinates or Local Barycentric Coordinates (Table II). We be-
lieve that our sparsity improvement is due to the small yet non-zero
error introduced by our optimization. Figure 16 compares layers
converted from weights. Additional examples can be found in the
supplemental materials. Our result is quite similar to ASAP, which
can be computed in seconds, but much smoother. Figure 15 com-
pares recoloring results with these techniques using the polyhedron
vertices as handles. Our supplemental materials contain a recoloring
GUI based on manipulating the RGB-space vertices.

[Chang et al. 2015]oursoriginal

Fig. 11. Recoloring images by changing palette colors with our approach
and with the approach of [Chang et al. 2015]. Note that as the approaches
find different palettes, colors were modified to achieve a similar recolored
result. Our results contain fewer unrelated changes or artifacts (red arrows).
The images’ layer decompositions computed by our method can be seen in
Figures 1, 4, 17, 19, and 21. Top three photographs from [Bychkovsky et al.
2011]. Bottom four original artworks c� Adam Saltsman; Yotam Gingold;
Michelle Lee; Adelle Chudleigh.
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layer 1 layer 2 layer 3 layer 4 compositeimage RGB-space simplified hull

Fig. 12. Our decomposition results on examples from [Richardt et al. 2014] (cup, hoover, and light). Results were computed with an opaque (RGB) background.
Artworks c� George Dolgikh, Spencer Nugent, Roman Sotola.

[Richardt et al. 2014]

original original original

Fig. 13. Global recoloring results obtaining by adjusting layers colors for the examples in Figure 12. Richardt et al.’s result [2014] requires manual segmentation.
Original artworks c� George Dolgikh, Spencer Nugent, Roman Sotola.

input 9 components

1

best alpha matte

2 3 4 5

6 7 8 9 k-means

Fig. 14. The output of Levin et al. [2008b] on our scrooge example. The
natural image assumptions are not well suited for digital paintings. Artwork
c� Dani Jones.

6. CONCLUSION
The RGB-space of an image contains a “hidden” geometric structure.
Namely, the convex hull of this structure can identify a small set of
generating colors for any image. Given a set of colors and an order,
our constrained optimization decomposes the image into a useful set
of translucent layers. Our layers can be converted to a generalized
barycentric coordinate representation of the input image, yet are
sparser.

Limitations Our technique has several notable limitations. First,
selecting per-pixel layer opacity values is, in general, an under-
constrained problem. Our optimization employs two regularization
terms to bias the result towards translucent and spatially coherent so-
lutions. However, this still may not match user expectations. Second,
we expect a global order for layers. We use layers to represent the
application of a coat of paint. However, in the true editing history,
a single color may have been applied multiple times in an inter-
leaved order with the other colors. Third, layer colors that lie within
the convex hull cannot be detected by our technique. We also do
not allow colors to change during optimization; we experimented
with an energy term allowing layers colors to change but found it
difficult to control. A related problem is images of e.g. rainbows;
when the convex hull encompasses all or much of RGB-space, layer
colors become uninformative (e.g. pure red, green, blue, cyan, ma-
genta, yellow, and black). Fourth, we require user input to choose
the degree of simplification for the convex hull and to choose the
layer order. Fifth, outlier colors greatly influence the shape of the
convex hull used for color palette selection. Outlier colors could
be identified in a pre-processing step and ignored for palette se-
lection (Section 3). Our opacity optimization approach will still
choose values that minimize the RGB-space distance to the outlier.
Sixth, if the image colors are all coplanar or collinear, color palette
selection (Section 3) should use a 2D or 1D convex hull and sim-
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original MVC LBC Oursedit ASAP

Fig. 15. Recoloring an example from [Chang et al. 2015] by manipulating vertices of the polyhedron and reconstructing colors with generalized barycentric
coordinates. We compare our layers-as-weights (Equation 7) to Mean-Value Coordinates [Floater et al. 2005; Ju et al. 2005], Local Barycentric Coordinates [Zhang
et al. 2014], and our As-Sparse-As-Possible coordinates. ASAP produces a very similar result to our optimization, while MVC and LBC produce an undesirable
change in the chair and the girls’ hair. The image’s layer decomposition can be seen in Figure 21. Photograph from [Bychkovsky et al. 2011].

MVC

LBC

Ours

ASAP

compositelayers edit

Fig. 16. Converting generalized barycentric coordinates into layers shows
that our optimization’s layers and the As-Sparse-As-Possible weights are
much sparser than Mean-Value Coordinates [Floater et al. 2005; Ju et al.
2005] and Local Barycentric Coordinates [Zhang et al. 2014]. On close
examination, the non-smoothness of ASAP weights is apparent. Our supple-
mental materials include additional comparisons between ASAP weights as
layers and our opacity optimization. Artwork c� Adam Saltsman.

plification algorithm. Our implementation does not test for such a
color subspace. Finally, nonlinear color-space transformations, such
as gamma correction, distort the polyhedron. We ignore gamma
information stored in input images.

Future Work In the future, we plan to study decompositions with
non-linear color compositing operations, such as the Kubelka-Munk
mixing and layering equations [Kubelka and Munk 1931; Kubelka
1948; Baxter et al. 2004; Lu et al. 2014; Tan et al. 2015]. This would
allow us to decompose scans of physical paintings into physically
meaningful parameters. We also plan to evaluate our color palettes
with the metric of O’Donovan et al. [O’Donovan et al. 2011] and
compare to a model of human extracted color palettes [Lin and
Hanrahan 2013]. The metric could be used to automate recoloring
by modifying our palettes to become more perceptually satisfying.
Finally, we plan to apply our per-pixel layer opacity values towards
segmentation; layer translucency is a higher-dimensional and poten-
tially more meaningful feature than composited RGB color.
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castle (digital painting)

(over black)

moth (RGBA digital painting)
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Fig. 19. Our decomposition results on digital and physical paintings. Results were computed with an opaque (RGB) or translucent (RGBA) background where
noted. Artworks c� Michelle Lee.

original original

Fig. 20. Global recoloring results obtaining by adjusting layers colors for the examples in Figure 19. Original artworks c� Michelle Lee.
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Fig. 21. Our decomposition results on examples from [Chang et al. 2015]. Results were computed with an opaque (RGB) or translucent (RGBA) background
where noted. Photographs from [Bychkovsky et al. 2011].

original original

Fig. 22. Global recoloring results obtaining by adjusting layers colors for the examples in Figure 21. Photographs from [Bychkovsky et al. 2011].

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. 1997. Al-
gorithm 778: L-BFGS-B: Fortran Subroutines for Large-scale Bound-
constrained Optimization. ACM Trans. Math. Softw. 23, 4 (Dec. 1997),
550–560.

Douglas E. Zongker, Dawn M. Werner, Brian Curless, and David H. Salesin.
1999. Environment Matting and Compositing. In ACM SIGGRAPH Con-
ference Proceedings. 205–214.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month 2016.


